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Consider the system of differential equations 

$ = I(29 0 + Q (t) r) (t) (0.1) 

where f(s, t) and q(t) are known functions of their arguments. In what 

follows small roman letters (with the exception of the letter t which de- 

notes the time and n the order of the system) will denote n-dimensional 

vectors, small greek letters scalars, and capital roman letters square 

matrices of order n. 

. . . + yn2P 

The symbol I( y 11 will denote the norm II y\I = (yi2 + 

of the vector y. We will assume that the functions f are 

defined and continuously differentiable for t > t0 at all points of the 

space x, except at the points lying on the surfaces 

&(z, t)=O (x=1,. .., p) (0.4 

of the space x x t. The surfaces (0.2) do not intersect, and in the 

neighborhoods of these surfaces the functions to are supposed to be con- 

tinuously differentiable. The functions q(t) are piecewise smooth and have 

(if any) only a finite number of discontinuities of the first kind in 

every bounded interval to < t ( T l . 

Under the condition 

I ‘1 (t) I < 1 (0.3) 

let the problem of optimum regulation of fast operation for the system 

(0.11 be formulated [l-3,4 I, i.e. it is required to determine a piecewise 

smooth function q’(t) such that for a given initial instant t = to, a 

point x = x0 and a smooth curve x = t(t) the movin.g point x(x0, to, t, T,I’) 

l The cap ital letter T wi 11 also denote the time. 
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of the trajectory of system (0. l), where of = q’(t), reaches the curve 

x = z(t) in the shortest possible time 9 = t - to. Obviously, without 

loss of generality, we can 8ssume that to = 0 and z(t) E 0, since in the 

contrary case it is sufficient only to carry out the transformation of 

the time r = t - tO and of the coordinates y = II - x(t). Henceforward, 

therefore, we will assume that tO = 0. z(t) E 0. 

In the papers [ l-3 ] a maximum principle for the solution of such 

problems in the most general ease of smooth stationary functions f(x, II) 
(U being a p-dimensional control vector) is proposed and justified. 

In conformity with the approach to the problems of optimum regulation 

as described in paper [ 4 I , in the present paper certain existence prob- 

lems as well as necessary and sufficient criteria for the existence of 

optimum trajectories of a nonstationary system (0.1) with discontinuities 

(0.2) are considered. 

The argument is carried out for the general case of systems of order n. 

However, for n > 2 an efficient formulation of the theorems is difficult. 

The difficulty in passing from systems of order two to systems of order n 

originates in the fact that for nonlinear systems in the case n > 2 it is 

in general impossible to give an efficient rule for the verification of 

the condition of complete linear independence of the resolvine: functions 

h(T, r) (see below p. ‘211). In particular we will note all cases for which 

the assertions are correct only when n = 2. 

1. Let us introduce certain definitions. 

1. The surface $sa(x, t ) = 0 is a section for the trajectory x(x,,, t, q)* 
if in a neighborhood of the point of intersection x$,, t,, r,~) with the 
surface & = 0 we have C& < 0 for t < t,, C& > 0 for t > t, ad the in- 
equalities 

and 

are satisfied. 

(1.2) 

* In conformity with the choice to = 0 the letter t,, in x(x0, to, t, ?l) 
is omitted, denoting the trajectory of (0 .l) by the symbol X(X,,, t, ~1. 
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Here it is assumed that on the surfaces (0.2) the functions f and their 

derivatives have discontinuities of the first kind. 

2. Assume that in the interval 0 < t < T the trajectory x(x0, t, ‘I) 

intersects the surfaces (0.2) at the points t = t,(a = 1, . ..) p). More- 

over, we will assume that these surfaces are numbered in the order of in- 

creasing t,. Let us assign to the function q(t) the variation 67 (t ) and 

let us construct the system of linear equations for the variations along 

the trajectory n(xO, t, 7 1. If for the trajectory under consideration the 
surfaces (0.2) are sections, then in constructing the variational equa- 

tions it is necessary to follow the rule justified in the papers IS,6 1 , 
i.e. the system of linear approximation for the perturbations due to the 

variations 6q(t 1 include linear differential equations 

T = P(t) 6x + q (t) 6r, (t) (1.3) 

where the elements of the matrix P(t) are to be calculated by the fonrmlas 

and the linear 

the points t = 

discontinuities of the quantities 6x, when passing through 

t a’ are determined by the relations 

6x (la + 0) = A (la) 6x (ta - 0) (1.5) 

ients of the matrix A( t,) are to be calculated by the fonn- The coeffic 

ulas [ 5 1 

{A Q%)>~, = 6,, + AP (a) 5,-” [:P- = ‘s) 
01 

(l-6) 

where 6 m = 1, 8~~ = 0 for fl f y, and Ap (a) denotes the magnitude of the 

discontinuity fo at the point x = x(x0, t,, 77). 

Applying impulse functions, linear discontinuities (1.5) can be in- 

cluded into the system (1.3). ‘Ihis, however, does not essentially simplify 

the argument. 

The system, consisting of equations (1.3) to (1.5), will be called the 
variational system. 

3. The trajectory n(xO, t, T,I) of system (0.1) will be called ahissible 
if the function v(t) satisfies the condition (0.3) and the surfaces (0.2) 

intersected by this trajectory are sections for the latter. 

4. To the variational system corresponding to a certain admissible 

trajectory x(x0, t, q 1, let us apply the Cauchy formula for the solution 
of nonhomogeneous linear systems [7 1 (p. 172). Putting the initial varia- 

tions 6x (0) equal to zero and taking into account the rules (1.5) we can 
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write 

6J: (t) = B, f’F, (t,)Fo-l (T) q (T) 67j (T) d7 + 
s 
lJ 

+L;lB.fl ‘a[‘Fa (ta+J F,-1 (T) q (7) 67, (7) d7: + i I;, (t) F,-1 (T) Q (7) 67, (7) cl: 

a=, ‘a [II 

(I.71 

where F,(t) is a fundamental matrix of the solutions of system (1.3) for 

t,< t4 t,+i, 

& (ta) = E, & = F,(t) A (L) J’,-, (L) . . J’, (ta;J A (la) 

and p denotes the number of surfaces (0.2) intersected by the trajectory 

x(zg, t, V). 

If the right-hand side of (1.7) is written down in the form of a single 

integral, the quantities 6x ( t ) are determined by the fomul a 

6x (t) = 1 h (t, 7) 6r, (‘F) dT 
0 

(j .S) 

where the vector h( t, r ) is expressible in a well-known manner in terms 

of the functions which are on the right-hand side of (1.7). In what 

follows the solutions of the variational system will be written at once 

in the form (1.8). 

The function h(t, r ) will be called the resolving vector of the varia- 

tional system. In what follows the vector function h( t, r ) will also be 

written in the form h(t, r ) = D(t, T )q(r ) or (for t, < r < t ) in the 
form h(t, r) = G(t, a)Fa-l(r )q(r ), where the matrices D(t, r ‘f+aAd G(t, a) 

can be expressed in a well-known manner in terms of the functions which 

are on the right-hand side of (1.7). 

5. The resolving vector h(t, r) will be called nonsingular if the 

scalar product (h( t, r ). 1) of the vector h by an arbitrary nonzero vector 

1 can vanish only for separate isolated values of r (for fixed t). 

Let us note here a criterion which allows us to decide when for a non- 

linear system of the second order the resolving vector h( t, r ) is non- 

singular*. 

* As the dimension n increases, these criteria become extremely com- 
plicated. Therefore we will not quote them in their general form. Later 

in Section 2 we will quote a criterion for a vector h(t, r) to be non- 

singular in the case n = 3. 
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Lemmu 1.1. let Qh, t) be matrix determined by the equality 

{Q(z, t)}q-j = y (cc p = 1, . . ., I() (1.9) 

where, at the points on the surfaces (0.2), the limit values Q+ and Q’ 
are to be taken according as the approach to the surfaces takes place 
from the domain 5, > 0 or 4, < 0, respectively, If for all x from the 
domain G of the space ( x) and for 0 < t < T the vector q(t) is not col- 
linear with the vector dq/..t - Q(z, t )q(t) (including the limit values 
of Q, q, dq/dt at the points of discontinuities), then the resolving 
vector h(T, t 1 of the variational system, calculated along an arbitrary 
admissible trajectory x(x0, t, 7 1 and lying for 0 < t Q T in the domain 

G is nonsingul ar. 

Proof. For t = t* let the equality 

(h(T, t’>.Z> = 0 for II 2 II + 0 (1.10) 

be satisfied. It t = t* is a point of discontinuity of Q(x( t), t) or 
q(t), then h(T, t*) stands for the right- or left-hand limit of h(T, t). 

For reasons of definiteness assume that in the equality (1.10) h(T, t*) 

denotes the right-hand value of h(T, t), and let us calculate the right- 
hand derivative d(h(T, t).Z)/dt*. E3y formula (1.7) we have 

d (A (T. Q.Z) 
dt+ (1.11) 

for t > t,, t < t,+, 

where C(T, a) is a certain nonsingular matrix which can be expressed in 
a well-known manner in tens of the matrices FY and B 

P 
(see p. 211). It 

is well-known [7 1 that (p. 171) 

dF,-’ (t) 
___ = - F,-l (t) P(t) 

dt 

and therefore it follows from (1.11) that 

d (h G”. O-4 = 
dt+ ([W? 4 6-l (0 @-PU,q(t)).Z) 

(P(t) = Q @!qy t, ?I, t)) 

According to the assumptions of the lemna the vector dh/dt+ = CF,-1 

(t)(dq/dt+ - Pq, is colinear with the vector h = GFil(t)q and, con- 
sequently, the two equalities 

h-1 = 0, dh/dt+.l = 0 for IjZII+O 

cannot be satisfied simultaneously. Consequently, at the point t = t* we 

have 
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i.e. (h. 1) f 0 in a neighborhood of the point t = t* and to the right of 

it (for t > t*). 

Similarly, it is proved that from the condition (h. I) = 0 for the left- 

hand limit h(T, t*) follows (h. 1) f 0 for small t - t* < 0. Hence the 

Lemna is proved. 

Notes. 1. If the vector q(t) is piecewise constant, then dq/dt& = 0 

outside the points of discontinuity. Therefore from Lemma 1.1 it follows 

that, in order that the resolving vector h(T, t) is nonsingular. it is 

sufficient that the vector q(t) is not a characteristic vector of the 

matrix Q(x, t). If the domain G is bounded and the inequalities (1.1) and 

(1.2) are satisfied uniformly for all admissible curves, then in the 

domain C for tC 10, T f , (h. 2) = 0 and \\ t I\ = 1, the quantity 1 d(h(T, t). t)/ 

dt “[ has a positive minimum. In this case. under the assumptions of 

Lemma 1.1, the resolving vector h(T, t) is nonsingular in a stronger sense. 

Namely, there exists a constant number y > 0 such that the measure of the 

set x,,on [O, T 3, where 

(h(T* t)*Z)<8 (1.12) 
satisfies the inequality 

mes X8 < y8 (1.13) 

no matter what is the vector 1 ( 11 I 11 = 1) and the admissible curve 

x(xg* t. 7) along which the system of variational equations is calculated. 

2. Along with the vector hfT, t) consider also the vector 

where 
g (1) = c (t,)F,-l (G cl (Q for t, < t < l,+r 

c (t,) = F,-1 (t,) /l-l (t,) . . . A-1 (ta_J &Al 0,) 

Since for 0 < t < T the vector functions h(T, t) and g(t) are connected 

by a linear nonsingular transformation g(t) = H.h(T, t), the conditions 

of nonsingularity of the vectors h(T, t) and g(t) coincide. Therefore the 

conditions of nonsingularity for h(T, t). which were proved above and will 

be deduced below, are also the conditions of nonsingularitY for g(t). 

Later on we shall not make particular mention of this fact. In what follows 

functions of the type q(t) = sign (h(T, t). I) will be considered, where 1 

is a certain nonzero vector and 0 g t Q T. The same function can also be 

determined by the formula v(t) = sign (g(t). l’), where the Vector I’ is 
connected with the vector 1 by means of a well-known nonsingular linear 

transformation. 

6. Let us quote from the book [ 8 1 a result wftich will be of essential 

use in what follows. 

Consider the problem of determining a function ((t, c), satisfying the 
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condition 

W, c)W (O&f<T) 

and being such that the equality 

&T, T)C(T, c)dr 

0 

holds. 

(1.14) 

(1.15) 

According to a theorem from [8 I (pp. 171-179) the function [(t, c) 

for the given vector c, the time T and the resolving vector h(T, t) exists 

if and only if the inequality 

min 
(IX)=1 

([,(h(T,+q,dr),l. 

0 

(1.16) 

is satisfied. 

If the vector h(T, t 1 is nonsingular and in the condition (1.16) the 

equality sign holds, there exists a unique solution of the problem (1.15) 

(to within values on a set of measure zero which we neglect). ‘lhe function 

[(t, c) is defined by the formula 

[(t, c) = sign (h (T, t)-2”) 

1’ being the vector which resolves the problem (1.16). 

(1.17) 

In the paper [ 9 1 it is shown that the functions [( t, c), which solve 

the problem (1.X), can be selected in such a way that they are continuous 

in measure with respect to the vector c, i.e. the function <(t, c) will 

converge in measure to the function [(t, c*) as c 4 c*. 

In the, vector space 1 c 1 the set of points c for which, for a given T 
and a resolving vector h(T, t), the problem (1.15)) (1.14) is solvable, 
is a closed and convex set containing the point c = 0 [fl I (pp. 171-179). 

For the given T and h this set will be called the domain of attainability 

and will be denoted by A (T, h). From the results of the book [ 8 1 it also 

follows that in the case of nonsingular vectors h the domain A (T, t) + 
A (T, h*) whenever T+ T* and h(T, t) + h*(T*, t) in measure on the 

segment [ 0, T * 1. 

2. For a piecewise smooth system (0.1) the necessary conditions of 

optimum control, briefly presented for mnooth functions f and in detail 
for nonstationary linear systems in an earlier paper 14 1 are justified 

in this section. E+ means of more complicated proofs, the arguments given 

below can be extended to the case of several control functions v1 (t 1, 
. ..) ?p, each being subjected to the condition (0.3). In this article, 
however, we shall restrict ourselves to the case of one control function 
q(t). 
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Let the system possess an optimum trajectory x(n,, t TO), To be the 

optimum time of control, and q’(t) the optimum control function itself, 

determining the optimum trajectory under consideration. 

In conformity with the plan outlined in paper [ 4 ] , to deduce the 

necessary conditions of optimum control it is necessary to consider the 

quantity 

0 171 = w i 7 (4 ! for 0 <t<T” (2.1) 

strictly speaking, it is necessary to consider the quantity 

u* [-q] = ?~fli Sup 1 Y, (t) 1 for 0 < t < T” (2.2) 

i.e. the upper bound of the quantity Iv(t)\ on the segment LO, TOI, ex- 

cepting subsets of measure zero. ‘Ikis circumstance, however, will be 

neglected in what follows without justifying it specifically. Therefore, 

instead of (2.2) we will consider the quantity (2.1) I. We will assume 

the fulfilment of the following conditions: 

1. The optimum trajectory n(xo, t, 17’ ) connects the points x = x0 and 

x = 0, and intersects ~1 hypersurfaces (0.2) for t = t, < To (a = 1, . ..) de 

2. For the variational system, consisting of equations (1.3) and (1.5) 

and calculated along the trajectory x(x0, t, ~‘1, the resolving vector 

ho CT O, t) is nonsingula_r. 

Theorem 2.1. Let the assumptions 1 and 2 be satisfied. Then on the 

optimum control function To(t) the functional aCq 3 assumes a relative 

minimum 

5 (+qO] = 3,jn = 1 (2.3) 

for the variations 8 q (t 1 restricted by the condition 

TO 

5 
11” (T”, T) 6r, (T) ck = 0 (2.4) 

0 

Proof, Assume the contrary, i.e. that for the optimum control frunction 

To(t) the conditions (2.3) and (2.4) are not satisfied. First let 

0 [r,"] = a < 1 (2.3) 

be satisfied. Then under conditions (2.5) and the result mentioned in 

part 6 of Section 1, for an arbitrary vector c, such that 

Ij c II < L3 (6 > 0) (2.6) 

and for sufficiently small 6 > 0, there exists a function &(t, c) which 

satisfies the conditions 

TV 

s 
11” (T,, 5) i, (7, c) d: = c (v = 1. 2, . .) (2.7) 

0 
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and 

I6& c)I\(l - -a upn O<ttT” = TO--TV (2.8) 

where { rv 1 is a certain monotone null sequence of positive numbers, 

f1 < l/2 TO. For every fixed value v >, 1; according to the results of 

[ 9 1 mentioned in part 6 of Section 1, the functions &(t, c) can be 

selected in such a way that they are continuous in the measure of c, taken 

from (2.6). Let us define the variations 6 qv (t, c, cl) of the functions 

To(t) by the formulas 

6r,“(A c, t”) = $” (t, c) (2.9) 

where p > 0 is a small parameter. Consider the solutions of the varia- 

tional system 6 ztv) (t, c, p)., corresponding to the variations (2.9). 

Eiy formula (1.8), as a consequence of (2.7) and (2.(J), we have 
‘1’” 

&d’) (II’.,, c, [A) = s V(T,, T)b&(T, c, [l)dT = [kc (2.10) 

0 

From equality (2.10), according to the definition (2.9) of the varia- 

tions 6 qv, we conclude that the endpoint of the vector y = 6% WTv, c, /L) 

for every v > 1 describes a sphere 

II Y II C @ (2.11) 

whenever the vector c runs through the domain (2.6). In addition, because 

of (2.5) and (2.8) the inequality 

I 71° (t) + $” (6 c, p) I < 1 for OdtG,T,, pfl (2.12) 

is satisfied. 

Now consider the behavior of the trajectories of system (0.1) corres- 

ponding to the control functions q(t) = q’(t) + 6q,, (t, c, p). 

The deviations Px(~) (t, c 

optimum trajectory x(x0, i, 
cc) of these trajectories from the considered 

t, q ) will satisfy the complete equations for 

the perturbed motion 

dC3vX 
- = P(@‘s + q (t)zri” (t, C, p) + r(h, t) dt (2.13) 

which, in contrast to the variational system consisting of (1.3) and (1.51, 
contain on the right-hand side additional functions r Wx, t). In every 
interval of continuity (t, + /3, t, + 1 - p ) ( /-l > 0) the functions r(S” x, t ) 
are small and of higher order with respect to 6 x, i.e. 

r(6’2, t) = o(II”“zl/) (2.14) 

In the neighborhoods of the points of discontinuity t = t the functions 

r(G”x, t) contain, besides the terms of the order of (2.1$), terms which 
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are compensated for, up to within the order of (2.14), by linear jumps 

(1.5) of the solutions of the variational system. Taking into account 

(2.9) and repeating the arguments of the papers [ 5,6 I it can be verified 

that for the variations 6 qy (t, c, p) the actual deviations 6 y (V) (t, c, cl) x 

differ from the solutions 6 z(v) (t, c, 11) of the variational system by a 

quantity of the order higher than to, i.e. 

:I 6’dv) (t, c, p) - bd’) (t, c, p) I/ = 0 (p) (2.15) 

We will not here give the derivation of estimation (2.15), since it 

can be obtained by methods well-known in the qualitative theory of diffe- 

rential equations and in the theory of stability [7 I (pp. 19-22). Let us 

further remark only that the estimation (2.15) is determined by properties 

of continuity of the functions f, ~3 f,,/dxp, d f,la t, d[,/dx 
(in the domains of their continuity) and the values of To and c B 

, a(=/& 
rom (1.1) 

and (1.2). Therefore, if instead of a single unperturbed trajectory 

x(x(), t, no ), as hitherto, but a set of such trajectories is considered, 

as will be done incidentally in the sections which follow, and if the 

estimations of the continuity and the numbers To and c are uniform with 

respect to the whole set of unperturbed trajectories, then the estimation 

(2.15) will also be satisfied uniformly, i.e. 

jlf3 “l(“) (t, c, I*) - W”) (C c, tL) /I < ‘p (IL) [A: ‘p (t”) --, 0 for II+ 0 (2.16) 

will hold good for the-whole set of trajectories. 

Let the number /.+, > 0 be selected in such a way that the condition 

I/ 6’d”) (L, c, 1”) - M”) (t, c, I*) /) < +- 6[Lo for O<GTT, (2.17) 

holds good. 

Then from (2.11) and the inequality (2.17) we conclude that the points 

n(x T 7’ + Fq,, (t, c, p,,) for every v > 1 fill up a certain manifold 

%?‘wh;:h emb races the point x(x0, TV, q” 1. Since for every fixed v >/ 1 

the variations 6 q,, (t, c, po) change continuously in measure with the 

variation of c in (2.6), the manifold I%(V) is a continuous image of the 

sphere 

1: 5 (q,, Tv, +q”) - 5 /I < p$ (2.18) 

and the points x c C(u), being images of the points, lying on the bound- 

ary of the sphere (2.18), are at a distance less than l/lo a~, from this 

boundary. CAving to. the fact that, for sufficiently large values of v,rV+ 0, 

the inequality 

Ij .x (Z”, 
II I “I 7,O) :j sye i-; [Loi; (2.19) 

is satisfied, and therefore for such values of v the manifold C(V) will 

embrace the point x = 0. JJere the manifld c(v) can be considered as a 
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continuous image of the sphere 

II x II < Pot (2.20) 

such that the points of X:(v), being the images of the points lying on the 

surface of the sphere (2.201, are at a distance less than l/8 pOS from 

the boundary of this sphere. 

On the basis of a theorem on the roots [ 10 ] we can conclude that 

there exists a variation 6 qv o (t, c*, cc,) for which the equality 

II: (~0, T,o, 7r” + Sri”, (k c.7 r.0)) = 0 (2.21) 

is satisfied. This means that if the condition (2.12) is satisfied the 

trajectory x(x0, t, 7’ + 61 (t, c*, p,)) will reach the point x = 0 in 

the time t = TV < T ’ (for Va”sufficiently large and fixed value of 

v=v) o , i.e. tie considered original trajectory n(xo, t, 7’) is not an 

optimum trajectory. The contradiction obtained shows that for the optimum 

control the inequality (2.5) is impossible. 

Now assume that the equality 

Q [TO] = 1 (2.22) 

is satisfied but the quantity dq”l is not minimal with respect to the 

perturbations of the control function 6 7 (t) restricted by the condition 

(2.4). ‘ken there exists a variation p 87(t) such that 

0 [T” + ,plsr,] = sup 1 f(t) + $7 (t) ) = 1 - Ep (OSPS1) (2.23) 

holds. 

Here c = const > 0, p > 0 is a parameter and 
T- 

\ 
’ h” (T”, 7) p&q (7) d7 = 0 

;I 
(2.24) 

owing to the condition (2.241, the solutions 6n(t, p) of the varia- 
tional system, and the corresponding variations ~6 7 (t ), satisfy the con- 

dition 

6s (I’“, t*) = 0 

Since for t = To the optimum trajectory x(no, t, 7’) reaches the point 

x = 0, and the deviation of the actual trajectory of (0. l), corresponding 
to the variation psq(t ), f rom the solution of the variational system 

satisfies the estimation (2.15), then 

holds good. 

01 the other hand the difference 1 - o [q + p 6 71 = c p is small and 

of the first order with respect to ~1. Therefore, repeating the arguments 
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used at the beginning of the proof, we arrive at the conclusion that for 
the sequence T, = T * - rvbv > 01 it is possible to indicate a soall 
number p0 and a variation Sq (t, c, p 1 of the function T(t) = q’(t) + 
poS 17 (t I such that the solutions S x 4 t, 
fill up the sphere (2.11) (for p = 

c, po) of the variational system 
p0 and a cpr;;ain constant 6 > 0), and 

the deviations of the linear approximation 6x v from the solutions of 
the complete equations S v x tv) are less than l/16 6~~. Since the radius 
of the sphere (2.11) decreases linearly with variation of ,u, and the 
distance (2.25) is of higher order of smallness with respect ot ~1, the 
number p0 can be selected so small that the condition 

holds. 

If the number rv = To- T,, is so small that the inequality 

II 5 (50, TV, r:’ + i*&q) --p (50, To, 7; + [lo 6q) il < $, l4 

is satisfied, then it can be asserted that the points 

z = 5 (%t TV, rio + E”o+ -I- 67 ft, c, lko)) 

fill up a manifold X:(V), when the endpoint of the vector c runs through 
the sphere (2.6), where X(v) is a continuous image of the sphere (2.20). 
The points XC Z(v), being images of the points lying on the boundary of 
the sphere (2.201, are from the points of this boundary at a distance 
less than 3116 ~~8. 

Now, as before, according to a theorem on the roots [ 10 1, we conclude 
that there exists ‘a trajectory x(x0, t, 7’ + 61 (t, c*, po)) arriving at 
the point x = 0 for t = T.. < T ‘, where the control function q(t) = 

g(tj + posq + sqft, 
again contradicts the 
tory. 

The contradictions 

‘Ihe theorem proved 

c*, y& > satisfies the condition (0.3). This fact 
assumption that x(zo, t, 1’) is the optima trajec- 

arrived at prove the theorem. 

allows us to establish the form of the optimum 

function n”( t>. Namely, the following assertion holds. 

Theorem 2.2. If under the assumptions 1 and 2 q”( t ) is the optimum 
trajectory x(x0, t, 7’1, then 

7(O (t) = sign (k” (T”, t) + I”) (2.26) 

where 1’ is a certain nonzero vector l. 

* According to the remark 2 of Section 1 on p. 9 the optimum control 

function q’(t) is also determined by the formula q’(t) = sign (g(t). l’), 
where 1’ is a certain nonzero vector. 
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Proof, Consider the vector 

co = T 11" (T", T) 7,“(T)& 
I 
0 

(2.27) 

‘I& assertion of Theorem 2.1 means that there does not exist a function 
‘1 (t 1 satisfying the conditions 

T” 

co = * 11” (I!‘“, 5) T (T) ds 
I 

(2.28) 
0 

ma 
sup /y(t)1 - cc <I for O<r&T” (2.29) 

In confonity with the results of paper [ 8 1 , mentioned in part 6 of 
Section 1, the function q” (t ) satisfying these conditions is determined 
unieely and has the form (2.26). This proves the Theorem 2.2. 

Note. According to the results of paper [8 1 (see Section ‘1) the 

vector 2’ satisfies the condition 

In the case of 
conditions (2.26) 

TO 

1 =min 
s 

/(ha (T”, ++L’ 1 d,r (2.30) 

(co.f)=l 0 

nonlinear systems it is most difficult to make use of 
and (2.30) for an effective determination of the optimum 

control since neither the vector C” nor the resolving vector function 
h’(fl, t) are known in advance (in the case of a linear system the resolv- 

ing function h(T, t) is one and the same for all trajectories (for a given 

T), and co is the vector F(T)zO). In the nonlinear case the function 

h(T, 1) depends on the trajectory which in turn is determined by the 

control function 17 ( t). The basic difficulty consists in the choice of 

such a vector lo for which the corresponding optimum trajectory arrives 

at the prescribed finite point x = 0. As a rule, for the determination Of 

the vector 1’ it is impossible to obtain equations which can be effect- 

ively solved, since the equations (0.1) in the majority of cases cannot 

be integrated in an elementary form for v’(t) given by (2.26). This diffi- 

culty can be avoided by selecting the vector 1’ on a trial basis. In such 

a case it is necessary to pass from the system of differential equations 

to the corresponding system of difference equations with a small Step 

iJ t: 

h-(p) = [f (z (pht), ~40 + q @At) 7 @At)] At (p = 0, 1, . . .) (2.31) 

The connection between the problem of optimum control for difference 

and linear differential equations is discussed in the paper [ll 1. The 
difference equations (2.31) can be integrated stepwise as follows. Let US 

give the numbers lp”, being the projections of Z”, and let us calculate 
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at the initial 

p = 0 only the 

culated. These 

formation (see 

point the values h ’ (fl, 0) [ actually, at the point I = x0, 

quantities g (01, 
P 

P 
being projections of g(t). can be cal- 

are obtained from hp” (7”. 0) by a nonsingular linear trans- 

the remark 2 of Section 1 on p. 9). As a consequence of an 

arbitrary selection of 1’ this circumstance is inessential, and in formula 

(2.26) we can write g(t) instead of ho (T? t)] . Given 1’ and g(O), deter- 

mine ?l’(O) from the condition (2.26). Afterwards, given q’(O), determine 

x(ht1 = x0 -Ax (0) from the system (2.31) for p = 0. Now determine 

g( h t) at the point x = x( h t), and again n( At) by the formula (2.261, 

and so on’. 

If after a sufficient number of steps the trajectory determined in this 

way does not come close to the point x = 0, another vector 1’ must be 

tested, and so on. Since there is no definite rule for the determination 

of 19, the conditions which are given by the stated necessary criterion 

must be considered mainly as guiding ideas for the determination of the 

optimum trajectory. 

Let us note a corollary of ‘Ihcorems 2.1 and 2.2 in the case of second 

order systems. 

CorollaFy 2.1. Let for all x from the domain G and for 0 < t < To the 

vector q(t) be not colinear with the vector dq/dt- Qq , where the matrix 
Q is determined by the equality (1.9). If n(xo, t, 7’) is the optimum 

trajectory and the hyp&surfaces of discontinuities (0.2) intersected by 

it are sections for it, then the optimum control function q’(t) is a 

piecewise smooth function of the form q’(t) = sign (h’(Tq t). 1’) [or 

q’(t) = sign (g(t).Z’)l. F or O< t< TOthe quantityo[ql= SUP I?(t)\ 
assumes on this function a relative minimum 

I [7r0] = J,in = 1 

for variations 6~ restricted by the condition** 
T” 

s 
II” (T”, _;) 6-/, (7) d: = 0 

,I 

(2.32) 

(2.33) 

l For the determination of g(pA t) (p = 0, 1. . . . ) it is necessary to 

calculate the fundamental matrix of the solutions of the Variational 

system consisting of equations (1.3) to (1.5). which also can be re- 
placed by finite difference equations. 

** Or, what is the .wne, by the condition 
TO 

s 
g (7) 6.q (5) t/s 0 

0 



On a problem of optima control of nonlinear systems 317 

In particular, if the functions f are smooth and the vector q(t) is 

not colinear with the vector dq/dt- Qq, the conditions (2.32) and (2.33) 

are necessary for a trajectory to be an optimum trajectory. 

The truth of Corollary 2.1 follows at once from kmna 1.1 and ‘lheorems 

2.1 and 2.2. 

Now consider the system (0.1) for n = 3. Let the functions f(x, t) on 

the right-hand sides of (0.1) be continuous and have continuous second 

order partial derivatives with respect to all arguments while the vector 

q is constant. Let us prove first sufficient conditions for which the 

resolving vector h(T’, t 1 is nonsingular. 

Lemma 2.1. For the variational system (1.3) constructed along an arbi- 

trary admissible trajectory x(x0, t, T) ), lying for 0 < t < 7 in the domain 

C, the vectors h(T, t) will be nonsingular provided that the following 

conditions are satisfied: the vectors q, Qq and Rq are not coplanar for 
XCG, O,< t,<Tand -l,<q< 1. Here the matrix Q is determined by (1.9) 

while the matrix R is defined by 

(2.34) 

To prove the letnna it is sufficient to note that the following equal- 

ities hold (the verification of which is omitted): 

d(h(T; t).l) = ([D(T*, t)Qq].l), “‘@‘;;; t)‘l) = ([D(T”, l)Kq].l) (2.35) 

where D is a nonsingular matrix such that h(T ‘, t I = D(T ‘, t )q (see p. 
211). Since the vector q, Qq and R q are not coplanar, there does not 

exist a vector 1 f 0 satisfying the conditions 

i.e. the function (h(T’, t).Z) can vanish only at separate isolated points 
of t, i.e. the vector h(T ‘, t) is nonsingular. 

From Lemna 2.1 and ‘Iheorems 2.1 and 2.2 follows the following assertion. 

CoroZlary 2.1. If for 0 < t < To the trajectory x(no, t, q”), connect- 
ing the points n = x0 and n = 0, is the optimum trajectory and lies in 

the domain G, where for 0 < t < tT ‘, - 1 < 7 < 1 the vectors q, Qq and 
R q are not coplanar, then the optimum control function v’(t) generating 
this trajectory, is a piecewise smooth function 7’ (t ) = sign (ho (T ‘, t ). 2’ ) 
(or else q’(t) = sign (g(t).Z’)). H ere Z”( Z’) is a certain nonzero constant 
vector, the function q’(t) is a solution of the problem for 0 < t < T ‘, 
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min max [q(t) ( = 1 f or the variations 6q restricted by the conditions 

where h”(T, t) is the resolving vector for the variational system (1.3) 
constructed along x = x(x0, t, 7’). 

3. In this section we will clarify certain problems concerning the 

existence of optimum trajectory with a piecewise smooth control function, 

taking into account the nonlinearity of system (0.1). We will assume 

that the finite point x = 0 does not lie on a hypersurface of the family 

(0.2) and that the functions f and q on the right-hand side of system 

(0.1) satisfy the conditions 

II f (x7 1) II < 1.1 II x II + &7 II Q (l) II 0, 0. 1....,3 
= const) (3.1) 

for all n and t c [ 0, T] . The conditions (3.1) are satisfied in any case 

if the functions f possess, in the domains of their continuity, uniformly 

bounded partial derivatives 8f#3xy. For further investigations the con- 

ditions (3.1) are not necessary but they make the discussions simpler. 

Let there exist at least one control function q(t) which satisfies 

condition (0.3) and is such that the corresponding trajectory x(x0, t, 7) 

connects the initial point z = x0 with the final point by an arc 0 < t < T. 

Let TJv = 1, 2, . ..) be a monotone nonincreasing sequence of numbers 

such that for every u > 1 there exists a control function v,(t) which 

satisfies the condition (0.3) and is such that the corresponding tra- 

jectory x(x0, t, 7 I satisfies the condition 

J: (z,,, T,, q) == 0 (3.2) 

Moreover, assume that there does not exist a control function q* (t ) which 

satisfies (0.3) and 

5 (X0, t, ‘i*) == 0 

for t < Tm, where T, = lim TV as v + 00. 

(3.3) 

If for a certain v > 1 the equality T,, = T, is satisfied, then, assum- 

ing that the trajectory x(no, t, q,,) intersects the hypersurfaces [, = 0 

and satisfies the section conditions (1.1) and (1.2) while the resolving 

vector ht”)(T t) of th e corresponding variational system is nonsingular, 
it can be assiited that as a consequence of (3.3) the trajectory n(no, t, 

7”) is the optimum trajectory and according to IJieorems 2.1 and 2.2 there 

corresponds to this trajectory a piecewise smooth control function q,(t) 

of the form q,(t) = sign (h”(T,, t). 1). 
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Iherefore it is of interest to consider only the case when for every 

u ) 1 the inequality 

T,>T, (v = 1, 2,. . .) (3.4) 

is satisfied; and, consequently, there exists an infinite set of tra- 

jectories xtV)(t) = x(x0, t , ‘1~1, forming a minimizing sequence I 2 Wt)f . 

Let us make the following remark. ‘lhe functions f on the right-hand 

sides of system (0.1) may have discontinuities on the hypersurfaces 5, = 0. 

We will assume that the curves n (“l(t), begi nning with a sufficiently 

large number V, intersect the hypersurfaces & = 0 and satisfy the section 

conditions (1.1) and (1.2). 

We will restrict the class of admissible control functions q(t) to 

piecewise smooth functions only. If we a&it a larger class of functions 

for which there exist solutions of the system (0.1) in a generalized 

sense defined in the paper [ 12 1 , then the proof can be simplified. Here 

in our argument we will confine ourselves to classical solutions only, 

although this lengthens the proof somewhat. 

We will prove that under certain restrictions such a piecewise smooth 

control function q’(t) actually exists and determines the optimum 

traj ectory x(x , t, 7’1, this being the limit trajectory for the sub- 

sequence { ~(~)!t)), while the f unction q”(t 1 itself is the function to 

which the functions qV( t j converge in measure on the segment [ 0, T-1. We 

will here give a short outline of the proof. A detailed proof for the 

existence of the optimum control function in the case of smooth functions 

has been given by Kirillova. 

First, using condition (3.11, by arguments typical for problems on 

continuation of trajectories [ 7 I (pp. 17-19)) it can be verified that 

the family of functions z(v) (t) is uniformly bounded for 0 < t 6 T, , and 

therefore as a consequence of (3.1) this family is also equi-continuous. 

lherefore from the sey,p { r Wt) 1 we can extract a uniformly con- 

vergent subsequence 1 x “P t) 1 ((I= 1, 2, . ..). 

Assume that the limit function x”(t) satisfies conditions (1.1) and 

(1.2) and that the resolving vector h”(T, t 1 of the variational system 
constructed formally along the curve r = x”(t) is nonsingular. 

‘Ihe further problem is to prove that the curve x = x”(t) is the 

optimum trajectory for the system (0.1) and that this trajectory corres- 

ponds to a piecewise smooth control function q”( t ). bt us prove this. 
lhe subsequence ( ~(9) (t 11 will be reenumerated by the numbers v = 1, 2,. . . 

let h(+T,, t) b e t e h resolving vector functions of the variational 
systems calculated along the trajectories x (Y)(tl. Since for v + ~4 on the 
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intervals of continuity tr - y < t < tr + y (y > 0) the matrices of the 
coefficients of these systems P Wt) converge uniformly to the matrix 

P’(t) of the coefficients of tte)limit variational system, evaluated 

along x = xoo( t ), the numbers taV converge to ty (t = t, are the instants 
of intersection of the trajectories with the hypersurfaces 4, = O), then 

the resolving vector functions h WTm. t) converge in measure to the 

vector function h”(T,, t I. 

Consider the sequence of vectors 

Since\n, (t)l= 1, all the points ci”i lie in the domain of attainability 

A (T’, h-1 (see pp.213). ‘lhe points c V as v + bo converge to a certain 

set of points, lying on the boundary of A ( T, , h”). If this were not the 

case, then, repeating with inessential modifications thevarguments of the 

proof of Theorem 2.1) (pp. 214-217), we could construct a trajectory 

x(xg, t, T]) arriving at the point x = 0 for t = T,- r*, where r* > 0. 

This, however, is impossible. 

Now consider a certain convergent subsequence c (9). Let lim c(~Y) = 
Do 

c , where c = cm lies on the boundary of A ( Tm, h”) and T]% ) is a piece- 

wise smooth function which satisfies the conditions 

TCO 
p _ - s IP (TOO, q */,“7 (T) ck (3.6) 

0 
and 

lTV)l-s1 for 0<1<‘1 cc (3.i) 

Since cm lies on the boundary of A ( Too, h”), then in conformity with 

part 6 of Section 1 and by virtue of certain theorems from paper [ 8 1 , 

the function q”(t) is determined uniquely by the condition 

7,“(t) = sign(hW(TCO, t).P) (P # 0, P = con&) (3.8) 

Let us prove that the function r,~,,~ ( t 1 converges in measure to q”( t 1. 

In fact, the sequence of vectors 

eCyu) = cCyI) _ cm (-[ = 1, 2, .) (3.9) 

satisfy the conditions 

and 

1imeW = 0 for -!+zc (3.10) 

Tc.2 
fJyy) = \ lfQ(l’,, T) t;(“Y) (T) dT (Py) (7) = ? yY 

w -F (TN (3.11) 
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~ltiplyi~ scafarly the left-hand side of (3.11) by Z", we obtain 

(3.12) 

As a consequence of the equality 7Yt) = sign (h"(T,, t) .Zm 1 the 
function under the integral sign on the right-hand side of (3.12) does 
not change its sign (the sign of s$~Y)(~), obviously, can be only opposite 
to that of q-(t)). Because of (3.10) the left-hand side of (3.12)tends to 
zero as y 3 00. As a consequence of the remark just made about the con- 
servation that (h".Z") can vanish only on a set of measure zero, it 
follows that the functions 4 9' (t) tend in measure to zero on the seg- ( ) 

ment EO, TbDl. lhus the functions q ?(t) actually converge in measure to 

r)"(t). 

Now it is not difficult to verify that after the substitution q'(t) = 
q"(t) in the right-hand side of (0.1) the corresponding solution x(x0, t,r) 0) 

on the segment 10, T 1 coincides with the function x = x"(t), since other- 
wise the functions x90")(t) and qV (t) could not simultaneously converge 
uniformly to C'(f) could not simultaneously converge uniformly to n"(t), 
and in measure to q=(t), respectively, 

If we assume that the sequence c (V) has at least tno different limit 
points fc") and (cm)*, then two control functions (q?t)) and (qYt))* 
should exist which are different on a set of measure zero and such that 
the corresponding trajectories x(x t,(qt")) and x(ro, 
for t CL 0, T,l.'Ibis, however, is &ossible. 

t,(q"))* coincide 

'lbe contradiction obtained shows that the sequence r],(t) converges in 
measure to a uniquely determined piecewise smooth function ~"(tf = q'(t) 
which at the same 
is proved. 

Now consider a 

Let the system 

time is the optimum control function. Hence the assertion 

second-order system (0.1). 

(0.1) be smooth and let the assumptions of Lesraa l.lbe 
satisfied in the shole space, i.e. 1) for all x and O,< t 4 T the vectors 
q(t) and dq,'dt - 0(x, t) q(t) are not colinear. lhen as a corollary of 
the results obtained above and Lemna 1.1 we obtain the following assertion. 

Corollary 3.1. If a second-order system satisfies the assumptions 1) 
and (3.1), and there exists at least one trajectory x(x0, t, q) connect- 
ing the points x = x0 and z = 0 by an arc 0 6 t 4 T, where the control 
function q(t) satisfies the condition (0.3), then the system (0.1) 
possesses an optimum piecewise smooth control function q’(t) of the form 
qO(t) = sign h(t), where the function A(t) may vanish only at separate 
points of tr[O, T]. 
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If the nonlinear system (0.1) is of higher order than two and the 
trajectory x = x(t) along which the variational system is calculated is 

not known in advsnce, an effective verification of the fulfilment of the 

conditions of nonsingularity of the resolving vector h(T, t) becomes very 

difficult. * If, however, for the variational system, calculated along a 

known admissible trajectory x = x(x0, t , 3 1, the verification of the non- 

singularity of the vector h(T, t) is considered, this nonsingularity can 

be verified without solving the variational system and without detennin- 

ing the vector h(T, t) itself, But also in this case with the increase 

of n, the sufficient conditions of the nonsingularity of h(T, t I become 

very rapidly more and more complicated. Let us here quote one sufficient 

condition of the nonsingularity of h in the case of a quasi-linear system, 

assuming that the vector q is constant. 

In the case of a linear system all variational systems calculated for 

various trajectories coincide, and therefore the conditions of the non- 
singularity of the resolving vector h(T, r 1 can be formulated effectively 

without knowing the trajectory in advance. Let us here Quote, for example, 

such conditions for a third-order system under the assrqtion that the 

vector q is constant and the functions P(t) in the linear system under 

consideration 

g = p (0 5 + q?(t) (3.13) 

are piecewise smooth with discontinuities (if any) of the first kind only. 

Lemma 3.1. If for t E 10, Tl the vectors q,Pq and p2q - (dP/dt)q do not 

lie in a linear two-dimensional space, then the resolving vector h(T, t) 
of the system (3.13) is nonsingular. 

The truth of Lenvaa 3.1 follows from Lenaaa 2.1 since in the case of a 

linear system along any trajectory x = (t) the equalities Q = P(t) and 
R= p2 - dP/dt are satisfied. 

Calculating successively higher order derivatives of (h.Z), analogous 

conditions for the nonsingularity of the resolving vector h(T, t) can be 

derived for the linear system (3.13) and for the general case n. Since 
these conditions have a cumbersome form, we shall not give them here. 

Consider a quasilinear system (O.l), i.e. a system of the form 

z = p (t) LfJ + I*‘(% t) + sq(t) (3.14) 

l See, for example, Lemma 2.1 in which are stated the sufficient condi- 

tions for nonsingularity of h when n = 3. 
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where the functions F(Z, t) possess continuous and uniformly bounded 

partial derivatives aF$& 

for small ~1 the vectors Qq 

dF /at, d2Fp/dX&,,, d2Fp/&&. SinCe 

and ff q (see Lemma 2.1) differ slightly from 

the vectors Pq snd P - dP/dt )q, then from Lemmas 2.1 and 3.1 we obtain 

as a corollary the following result. 

GJFOZ ZUFY 3.2. 
(P2- 

If q is a constant vector and the vectors q, Pq and 

dP/dt )q do not lie for every t from 0 < t < T in a linear two- 

dimensional subspace, then for sufficiently small p the resolving vector 

h(T, t) of the variational system, calculated along any admissible curve 

x = n$.), t, ~1, is nonsingular. 

From Corollary 3.2 follows the validity of the following conclusion. 

coral kZFy 3.3. Let the parameter p in the right-hand side of the 

system (3.14) be selected sufficiently small, and suooose that the con- 

stant vector q and the vectors Pq and P2q - (dP/dt )q do not lie in a 

linear two-dimensional space for every t c IO, Tl . If there exists at least 
one admissible curve r(xO, 

by an arc r(xO, 

t, 71, connecting the points x = x0 and x = 0 

t,r)) (0 < t < T), the system (3.14) possesses a piecewise 

smooth optimum control function r,~O(t) of the form q’(t) = sign A( t 1, to 

which corresponds the optimum trajectory n(xo, t, p’). 

bt us here quote without proof a corollary which can easily be derived 
from the results of Section 3. 

(krollary 3.4. Consider the system of equations 

g = f(s) + bu 

and denote by A the matrix 

If the vectors b, Ab, . . . , An-lb are linearly independent, there exists 

a neighborhood of the point x = 0 such that for an arbitrary point x = no 

there exists an optimum trajectory x(x0, t, q” 1, connecting the points 
x=x and x: = 0, the optimum control function q’(t) having the form 
q” (t lo= sign A( t 1, where the function A(t 1 vanishes only at separate iso- 

lated points t. 

4. In this section certain sufficient conditions for optimum control 

will be proved. We will consider systems of order n, assuming that the 

only hypersurfaces of discontinuity Sa = 0 are the hypersurfaces t = ta = 
const. Among the acfnissible curves the optic trajectory x(no, t, ~1, 
according to the results of Section 2, is that one for which the control 

function q”( t 1 has the form 
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vf (t) = sign (h” (T”, t). I”) (4.1) 

where 1’ is a certain constant nonzero vector. 

Let US prove that under certain restrictions conditions (4.1) are also 

necessary for the existence of a local optimum trajectory of the system 

(0.1). lhe latter term is to be understood in the following sense. 

Definition 4.1. ‘Ihe trajectory x’(t) = x(x 
00’ 

t, q”), connecting the 
points x = x0 and x = 0 by the arc 0 < t < T , where the control function 
To(t) satisfies the condition (0.3), will be said to be a local optimum 

trajectory if there exists a number c > 0 such that no motion n( t 1 = 

X(X0’ t, q) exist which satisfies the system of equations (0.1) with the 

control function 7 (t) subject to condition (0.3) and which connects the 

points x = r. andn=ObythearcO< t<TwithT<TOandissuchthat 

II 2 (% t, To) - z (GJ, t, q) 11 < E for O<t<T 

holds. 

In other words, the trajectory zc” (t) must be an optimum trajectory 

with respect to arbitrary variations 87~ restricted by condition (0.3) and 

with respect to sufficiently small displacements of the trajectory itself. 

Theorem 4.1. Let the following asswrptions be satisfied: 

1. ‘Ihe trajectory connects the points 1: = x0 and n = 0 by the arc 

O< t < To, i.e. 

z (&I, O,$) = x0 (4.2) 

IC (x0, T”, 7”) = 0 (4.3) 

2. ?he control function q”(t 1 is of the form (4. l), where h”(T ‘, t 1 is 

the resolving vector of the variational system calculated along 

X(X0’ t, 7p). 

3. For the vector 1 O, determining the control function q”( t ), the pro- 

perty of being nonsingular is satisfied in a stronger sense, namely the 

measure of the set IZs , where the inequality 

1 (i”.hO(TO, t)) I< 6 (4.4) 

holds, satisfies the inequality 

mes(&)\($ (y = const) (4..5) 

Obviously, for conditions (4.4) and (4.5) to be satisfied, it is 

sufficient, at the points for which ( Z”.hO) = 0, for the left- and right- 

hand. derivatives of (1’. ho) to satisfy the conditions 
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4 lhe vector e which is tangential to the trajectory x(x0, t, 7’) at 

the point t = T - 0 and is in the direction of increasing t, satisfies 

the condition* 

(e-l”)>0 (4.7) 

5. Denote by a(t,) the vectors defined by the equalities 

TO n 

a (t/J = s F (T”, tk) F-yr, tk) 

tk 

a2f (xo (T)l ‘) hi (T, tk) hj (7, tk) ] dT axi axj 

where F(t, t,) is a fundamental matrix of solutions of the variational 
system 

d8x 
- = P(t)6z dt 

(F(tk, t,), h,(t, r 1 is th e component of the resolving vector of this 

system and tk the time instants for which the equalities 

are satisfied. 

(10. h” (T”, tk)) = 0 

We will assune that the inequalities (a,.e) > 0 are satisfied. 

Ulder these assqtions the trajectory x 

optimum trajectory. 

P X(X0’ t, 7’) is a local 

Note. If the same control function q’(t) 

(4.1) by means of various vectors Z”, it is 
(4.7) to be satisfied for at least one such 

of Theorem 4.1 it is naturally assumed that 

does not intersect the points x = 0 for t = 

can be determined by formula 

sufficient for condition 

vector lo. In the formulation 

the trajectory x(x0, t, 1’) 
Ti < TO. 

Condition 5 can be replaced by the requirement that the second partial 

derivatives d*f= /axPax,, shall be sufficiently small. 

Let us note also that by means of an example it can be shown that in 

* Obviously the vector c is defined by the equality 

e = lim If (z (x0, t. V% t) + 93’ (01 npa t-.T’-0 

provided that this limit is different from zero. 
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the general case the conditions l-4 are not sufficient for x(x0, t, q”) 

to be a local optimum trajectory. 

Proof. Assme the contrary, i.e. that there exists a sequence of 

numbers c,, > 0 (V = 1, 2, . . . ), converging to zero, and a corresponding 

sequence of control functions qy(t), satisfying condition (0.3) and such 

that the trajectories x(x0, t, qv) satisfy the conditions 

and 
x(x0, To-G, q,) = Oror T,>O (v=l, 2,...) (4.8) 

II 5 c%cg, 1, 71”) -X(%7 h qO) I/ < E” (v = 1, 2, . 1 .) (4.9) 

Let T” = vv - q”. Since the functions q,, and 7’ satisfy the condition 

(0.3), and the function q’(t) is defined by the fomula (4.1), the sign 

of f&(t 1 is always opposite to that of (ho (To, t ).Z”). Let us calculate 

the scalar products of the vectors Sx (“)(t), which are solutions of the 
system of variational equations 

T” 

&zW (T,) = s h” (T,, 7) &j,(7) dr (6~ (t) = C, (t), T, = I’” - TV) (4.10) 

0 

with the vectors Z(“) = [ (F(Tv).F-l(To)*]‘l 1’ . We have* 

(6z(“) (TV). I(“)) = ; (h” (T,, 7).W)S-q(7) dr (4.11) 

0 

From conditions (4.4) and (4.5) we conclude that the functions Sq,,(t 1 
converge in measure to zero as v + m . ‘lbe deviations S”x(“) of the actual 

trajectories of (0.1) from the trajectory x(x0, t, TO), caused by the 

variations 6q, from the corresponding solutions of the variational system, 

are of the order okv). For v + 00 the left-hand sides of the equalities 

(4.11) st converge to zero. &I the other hand, if the measure of the 

set (X under condition 

I 6% I > 6 for 0 G t < T, (4.12) 

l The sign l in the formula for I (VI means the transpose of a matrix and 

F(t) a fundamental matrix of solutions of the variational system (1.3). 

As a consequence of c,, + 0 we have r,, + 0 for v + -. Therefore by the 
definition of the vectors 1 (VI and the vector ho (t. r ) (see 

have. obviously, the equality (h’(*, tJ.2’) -Ch”(Tv, t1.l d;, “ii;, re 

in addition, Ztv) + I0 as v + 00. Without loss of generality we shall 

assume that jl~‘ll = 1. 
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is greater than a > 0, then according to condition 3 of the theorem we 

have 

1 (W - &z+) (TV)) i > ~$a (yl = con&) (4.13) 

From the inequality (4.13) WE conclude that for Y -D 00 the functions 

converge in measure to zero. Denote 

T” 

t*” = 1 I b” U) ! dt (4.14) 

0 

Hence lim~(~= 0 asu+w. 

First consider the case when from the sequence b a subsequence can be 

extracted (in order to simplify notations let us identify this subsequence 

with the original sequence’ b) for which the conditions 

(4.15) 

are satisfied and where p is a fixed, sufficiently mall, positive nuntbez. 
‘Ihe deviations of the actual solutions 6”~ of the system (0.1) from the 
linear approximation 6x, i.e. S”x = x(x0, t, 7’ + 8q,> - x(x9, t, q”) 

caused by the variations 6q,,, will be of the order o(b). ‘Ills fact can 
be easily verified by the usual arguments of the qualitative theory. How- 

ever, we will not carry out this verification here. At the sme time by 

virtue of condition 3 of the them 

signs of 8qV(t) and (h’(T,, t). I (7 
and the above coincidence of the 

) the quantities (4.11) are small and 

of the first order with respect to b, and negative for v = 1, 2, . . . . 

Thus the vectors ~“z(~)(T,,) will also be small and of the first order 

with respect to pV. In addition 
%f 

t ese vectors must converge to the vector 
e since, by the definition of 6x 

&,A 

and the trajectories x(x0, t, q” + 
we have 

s’z(“‘(Ty) = - z(zo, T,, 7“) 

The scalar products (8x (“1. Z(“)) and (S”x(“). Z(“)), as it was proved, 
differ by an infinitely mall quantity of higher order, and consequently, 

the quantities (6 x IJ (v), &V)) must be mall and of the first order with 

respect to /L,, and negative for large values of Y. ‘l’kis contradicts the 
convergence of Z(y) + 1’ in direction and condition 4 of Theorem 4.1. 

Now consider the second possible case when 
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where yv + 0 as v + 00. In this case it cannot be asserted that the 

variations S?‘(T,) are small and of the first order with respect to CL. 

‘lherefore second-order terms in p,, must be taken into account. l’hese 
additional second order terms, as it can be verified by solving the 

coaglete equations of the perturbed motion by successive approximations, 

will be equal to the vectors determined by condition 5 of the theorem and 

multiplied by certain positive quantities BVk. 

Denote by S,nv ( t 1 the second approximation of the wlution Sv8( t I. 

Now, as in the first case considered, we arrive at the contradiction, 

namely the scalar products @x2 fv). Zcv) ) and W’x(“). Z(“)), which differ 
from each other by infinitely small quantities of higher order than p,*, 

nust be negative for large values of v. This fact, however, contradicts 
the conditions 4 and 5 of the theorem. 

‘Ihe obtained contradictions prove the theorem. 

Notes.1. In the conditions of the theorem it was assumed that the 
hypersurfaces of discontinuities & = 0 are the planes t = fa. This 
assumption was needed in order to make use of the estimation 11 avx - 8~ll= 
o(,uv) in the process of the proof, the derivation of which without the 
assumption that these hypersurfaces are sections for the trajectories 
under consideration, would be in general impossible (in any case on the 
basis of the nongeneralized solutions x(t) of system (0.1)). In con- 
sequence of the bo6ndedness of the right-hand sides of the system (0.1) 
along the trajectories x(rO, t, 9) which differ from the trajectory 

X(XO’ t, q”) by a small quantity 6 > 0, the property of being sections 
for these trajectories is possessed also by the hypersurfaces I!& = 0, not 
necessarily coinciding with t = fa, but being such that the normal vector 
grad I& is inclined to the t-axis at a sufficiently small angle. Therefore 
the assertion of Theorem 4.1 remains in force in the case of such hyper 
surfaces of discontinuities also. 

2. If we consider only variations which are restricted by the condi- 
tions I&,1 < fV, then from the fact that the hypersurfaces of discontin- 
uities {, = 0 are sections for the trajectory x(x0, t, q”), it will follow 
that they are sections also for the trajectories x(ro, t, 7’ + 8q,,>, i.e. 
to prove that the trajectory x(x8 , t, 7 0 ) is a local optimum trajectory 
in the sense of small variations 6% as well as in the sense of small 
variations of 61, it is sufficient only to assume in Theorem 4.1 that the 
hypersurfaces i& = 0 are sections for the trajectory x(x0, t, TO). 

3. For condition 3 of Theorem 4.1 to be satisfied, it is Sufficient 
that the vectors 

h” (2’“. t), h’ (T”, 1) = D [Pq - q’] 
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where the matrix D(T’, t) determines the vector h = NT’, t)q( t) (see 

p. 211) do not lie simultaneously in the hypersurfaces (1O.h’) = 0, 
(Z’.h’) I 0. In fact. in such a case. repeating the arguments of the 

proof of Lemma 1.1. we would obtain that 

d (IL” (T”, f). 10) 

dt’ 
F-Y>0 (y = con&) 

holds at every point of the trajectory, where (l”.ho) = 0. i.e. condition 

3 of the theorem, in fact, is satisfied. 

4. In the case of a quasilinear system (3.14) with sufficiently small 

p for condition 3 of Theorem 4.1. in conformity with Corollary 3.3 and 

the previous note. to be satisfied, it is sufficient for the vectors 

F (T”) F-’ (0 Q (0, F(T”)F-‘(t) P(f)+-2 
[ 3 

where F(t) denotes a fundamental matrix of solutions of the linear system, 

not to lie for 0 < t-\< To simultaneously in the hypersurface (lo. h) = 0. 

5. In the particular case of a second-order system for condition 3 of 

the theorem to be satisfied, it is sufficient for the vectors q and Qq - 

q’ to be noncolinear. 

6. Finally, let us note that conditions 1, 3 and 4 of Theorem 4.1 

correspond in the stationary case to the rule for the construction of the 

optimum trajectory on the basis of the Pontryagin maximum principle [l 1. 

Exarple. Finally, consider a simple case of a concrete system by means 

of which we shall illustrate the possibility of verifying all the condi- 

tions imposed on the systems considered in proving the theorems of 

Sections 2-4. 

Let the equation 
d”r 
clt’ + f (J,. 1) - 7r (l) (4.17) 

be given, where x and f are scalars, the function f(z, t) is continuously 

differentiable for ta < t < ta+ 1 and its partial derivatives admit (if 

any) at the points t = ta only discontinuities of the first kind. We shall 

also assume that the following conditions 

f (0, 0 = 0, 
a/ 

Q1 < TX < fiJ? for any 3 (0, > 0. wz == const > 0) (4.18) 

are satisfied. 

The system of two equations, equivalent to (4.17), is 

dr 

dl --* 
+I 
& =_= -- I (z, I) + -4 (Q (4.19) 
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is 

The variational system corresponding to (4.19) has the form 

d8x day -- 
dt -b dt = - P (x Oh t) 82 + h (G (4.20) 

Let us verify that the resolving vector h(T, t) of the system (4.20) 
nonsingular. 

In fact, in the case under consideration the vector Q has the form 

while the vector Qq has the form 

and. consequently, the vectors are not colinear. 

The trajectories of the system (4.19) for tl = 9 have the form of 
spirals described about the origin of the coordinates x = 0, y = 0. 
According to the nature of the function f(x, t) these spirals may be 
either periodic curves, or they may spiral towards the origin or away 
from the origin as t + =. In the particular case when f(x) does not depend 
on the time t, all solutions of (4.19) are periodic and are given by the 
level curves v = const. of the function 

v (5, Y) = Y' + 2 5 f (4) dS 
0 

Let the function 79 be determined as follows: ~)u = - 1 if the traject- 
ory passes through the domain L > 0, y > 0; q0 = 1 in the domain x < 0, 
y < 0 and q0 = 0 for all other x and y. Then for the initial values xc, 
y9, lying sufficiently close to the point x = 0. y = 0 (in the stationary 
case for all x9, yo) the trajectories (4.19) have the form of spirals 
which asymptotically approach the point z = 0. y = 0 as t + m (see figure). 

If the time length To of such a trajectory is chosen sufficiently 
large, the point x(x9, yo, To, r),,), y(xo, yo, To, ?),,I will be sufficiently 
close to the point x = 0, y = 0, and it is possible to indicate variations 

6q of the function q,,(t) such that the point x(x9, yc, T,,, q. 2 &>. 

Y (x0, YO’ To, q. + 8q) will reach the point x = 0, y = 0. We will not 
verify this here since it can be done by methods similar to those con- 
sidered in Section 2. Consequently, there exists a 

domain 
will be the whole plane. Now, according to the results of Sections 3-4, 
it can be asserted that for every point (ro, yo) of C there exists an 
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optimum trajectory ~(t, 1’). y(t, 1’). connecting the points x = x0, 
y = y. and x = 0, y = 0, and the corresponding control function q’(t) 
being a piecerise smooth function of the form q’(t) = sign (h”(To, t). Z’). 
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